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SUMMARY

This paper is devoted to the problem of reliable control for interval time-varying delay systems subjected
to actuator saturation and stochastic failure. A new practical actuator fault model is proposed by assuming
that the actuator fault obeys a certain probabilistic distribution. An optimization problem with LMI con-
straints is formulated to determine the largest contractively invariant ellipsoid. Delay distribution and fault
distribution-dependent estimations of the domain of attraction are obtained by using the LMI techniques
and an optimization method, such that the mean-square stability of the systems can be guaranteed for given
H o performance index y. Two illustrative examples are exploited to show the effectiveness of the proposed
design procedures. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Actuator saturation is usually encountered by reasons of physical constraints. It may have a dele-
terious effect on both the stability and performance of controlled systems. Considerable attention
has been devoted to the kind of liner system subject to saturating controller. Two main approaches
have been developed in the existing literature: (i) let saturation do not occur, which is called positive
invariance approach [1]; (ii) allow saturations to take effect while guaranteeing asymptotic stability
[2,3]. The main challenge of those two main approaches is to obtain a large enough domain of initial
states which ensures asymptotic stability for the system despite the presence of saturations.

On the other hand, much effort has been devoted to the reliable control for time-delay systems.
Firstly, the existence of the time delay may cause instability or bad performances in dynamic sys-
tems. Hence, the stability and stabilization problems for time delay systems have received some
attenuation [4-6] and the references therein. Secondly, unexpected faults or failures may result in
substantial damage[7-9]. A high degree of fault tolerance for the operational systems is an essential
and integrated part of the overall control system design. It is noted that the reliable control design-
ing methods in the open literatures are based on the assumption that control component failures are
modeled as outages [10, 11]; that is, when a failure occurs, the actuators signal simply becomes zero;
or modeled as partly outage [12, 13], that is, the control input cannot reach its full gain but work
in an exact amplitude. However, it cannot represent actuator-failure exactly. The actuator may not
be completely failure; that is, the scale factor & = 0 is the simplest special cases. In practical sys-
tems, because of actuators aging, zero shift, Electromagnetic Interference, nonlinear amplification
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in different frequency field, and so on, it will be more reasonable that the fault scale factor obeys
a certain probabilistic distribution in an interval. To the best of our knowledge, it seems that there
are no results on the problem of reliable control with such an actuator fault model which satisfies
a certain probabilistic distribution. This motivates us to further investigate the problem of reliable
control systems with stochastic actuators failures.

This paper investigates the reliable H, control design for interval time-varying delay systems
with consideration of both stochastic actuator failures and saturations. The failure scale factor of
each actuator is governed by a random variable; a new stochastic fault model is proposed. Delay dis-
tribution and fault distribution-dependent approaches are adopted, and the corresponding existence
criterion of the stabilizing controller is derived via LMI formulation. Furthermore, an optimization
problem with LMI constraints is formulated to obtain the largest contractively invariant set. Two
numerical examples are given to show the effectiveness of the proposed design procedures.

Notation: R" denotes the n-dimensional Euclidean space, R"*™ is the set of real n x m matri-
ces, I is the identity matrix of appropriate dimensions, and ||-|| stands for the Euclidean vector
norm or spectral norm as appropriate. The notation X > 0 (respectively, X < 0), for X € R™*"
means that the matrix X is a real symmetric positive definite (respectively, negative definite).
Gnr = €([—7 0], R") denotes the Banach space of continuous vector functions mapping the inter-
val [—t 0] into R” with the topology of uniform convergence. When x is a stochastic variable, E{x}
stands for the expectation of x. . denotes infinitesimal operator. The asterisk * in a matrix is used
to denote term that is induced by symmetry; matrices, if they are not explicitly stated, are assumed
to have compatible dimensions.

2. SYSTEM DESCRIPTION

In this paper, we consider a class of interval time-varying delay systems with actuator saturation

x(t) = Ax(t) + Agx(t — (1)) + Bio(u(t)) + Brw(t)
Y:9 y@)=Cx(t)+ Do(t) (1)
x(s) =@ (s),s € [-r2 — 1],

where x(¢) € R” and u(tr) € R™ denote the state and control vectors, respectively. w(¢) is the
disturbance. A, Ay, By, and B are known constant matrices with appropriate dimensions, () is
a time-varying delay which satisfies 7; < t(¢) < 12, ¢(s) is a continuous vector valued initial
function. The function o (+) is the standard saturation function defined as follows:

ou(t) = [oui()oW2(1)) - o um@)]", )
and
u; if u,-(t) > U;
o) 2 wi()if —i; <ui(t)<ii; i=1,2--,m. 3)
—u; if u;i(t) <u;

Here, a more general actuator fault model for the system (1) is proposed
uf (1) =Bou@)), “)

where E = diag{éy,---,&m}, and & (i = 1,---,m) are m unrelated random variables which
denote the fault scale factor of each channel. The mathematical expectation and variance of &; are
Wi and 51-2, respectively. For convenience, we define & = diag{&;,--- ,&n}.

Remark 1

Equation (4) describes the actuator fault by a random matrix & which satisfies a certain probabilistic
distribution in an interval. In particular, if the case & = 0, it stands for an entire missing of signals,
and if & = 1, it indicates intactness. In fact, actuator signal drift usually occurs in practice situations,
whereas completely failure and intactness are only two special cases.
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For convenience, we define F; = diag{0,---,0,1,0,---,0}. Then, the control input with
S—— S——

i—1 m—i
actuator failure can be rewritten as

ul (1) =) & Fio(Kx (). (5)
i=1

Remark 2

In [14], defining uf (1) = (1 — p)o(u), where p (0 < p < 1) is a scalar, which denotes a fault scale
factor. However, each control input channel should be with different fault scale factor. In this paper,
arand diagonal matrix Z is introduced to denote every channel’s fault.

Remark 3

In order to reduce the conservativeness by reasons of actuators fault, we can introduce some prob-
ability information, for example mathematical expectation and variance, and so on, in criterions by
applying statistics method.

Then, the dynamics of (1) with actuator fault model (5) can be described by

x()=Ax({t)+ Agx(t —t(t)) + B1Eo(Kx(t)) + Bow(t)
Y:9 z(t) =Cx(t) + Dw(r) 6)
x(s) =¢(s),s € [-r2 —].

To estimate for the domain of attraction, the following subset are introduced.
LK) 2 {x(t)eR": |kix(t)| < itz,i €T}, (7)
where k; is the i-th row of the matrix K, and
EP,DE{x)eR :xt)"Px(1) <1}, (8)

which is a contractively invariant ellipsoid.

The objective of this study is to develop a reliable controller for the closed-loop system with con-
sideration for both stochastic actuator failure and actuator saturation. For this purpose, the following
lemmas and definitions are introduced.

Definition 1 ([15])
For an initial condition xo = ¢ € %, 1,, suppose the state trajectory of system (6) x (¢, xp) is the
mean square asymptotically stable, the domain of attraction of the origin is then defined as

2 ={x0 €6, :Il_i)rglo E{x(t,x0)}} = 0}. 9)
Lemma 1 ([16])

For any constant matrix R € R™" R > 0, scalar 7, > 0, and vector function X : [—1;,, 0] — R”
such that the following integration is well defined, it holds that

t T
T /t_ T ()R (1) s[ ig)_ ) } [ R ][ ig)_ o) }

Lemma 2 ([6])
Suppose M, N, and 2 are constant matrices of appropriate dimensions. Then,

(t(t) —tm)M + (tpy — (1)) N + Q2 <0, (10)
is true for any 7(¢) € [t,, Tpr] if and only if

(tm — )M + Q <0, (11)
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(ts — tm) N + Q < 0. (12)

Let # be the set of m x m diagonal matrices whose diagonal elements are 1 or 0. W; (i =
1,2,---,2™) is the element of #, and define W,” = I — W, obviously, W, is also an element of
W

Lemma 3
Let K € R™*" be given. For x(¢) € R”, if x € L(H ), then

o(Kx(t)) eco{W;Kx(t)+ W, Hx(t):i €1}, (13)

where the notation co{-} denotes the convex hull of a set.

3. MAIN RESULT

In this section, the region of local mean-square stability, associated to the systems with actuator
saturation and stochastic failures is considered firstly, and the design of the reliable control is then
presented to tolerate the saturations and failures.

Theorem 1

For given scalars 71, 1,,8;(i € T) and matrix Z, the closed-loop system (6) under all possible
faults and within the set &(P,1) is mean-square asymptotically stable, if there exist matrices
P>0,0,>0,0,>0,R; >0and R, > 0 such that the following hold

&(P,1) C L(H), (14)

\IJI.”+CI>+d>T * * *

a0 A 0 (i=1,2--,2"7r=12) (15)
< 1= 9Lyt ’r= B >
R 0 —-R
W4l (r) 0 0 —R,
where
I * * ok *
R] _Ql_Rl k k ES
wit=| ATp 0 0 % x|
0 0 0 0 =
BI'p 0 0 0 —y2I
Ii= (A+ BiEK)TP + P(A+ B1EK) + Q1+ 02— R+ CTC,
¢=[0 M N-M —-N 0],
V=1 (A+BEK) 0 Ag 0 By ],
§1BiFiKi 0 0 0 0
wit= SN
SmB1FaKi 0 0 0 0
R = diag{&ﬁ}w@:ﬁzli’l + (z—11)Ra,
m
V()= Jo—aMT v 02)= /o —uNT.
Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
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Proof
Choose a Lyapunov function as

t t

xT(s)Q1x(s)ds —1—/ xT(s)Qax(s)ds

1—12

V(x,) =xT(t)Px (1) +/

—11

0 t -7 t
+1 / / xT(v)R1x(v)dvds + / / T (v)Rox (v)dvds.
—11 Jt+s t+s

)

Using the infinitesimal operator for V'(x;), it follows

2
2T (@) Pi(1) + xT(1)(Q1 + Q2)x(1) = Y _xT (1 —w)Rix(t — )

gV(X;) =K
i=1
+ xT (%5 (1) — 1, / xT(s)01x(s)ds — / ; )%T(S)Rz)'c(s)ds} . (16)
Employing the free-weighting matrix method [17], we have
26T ()M [x (t—11)—x(t —1(t)) — o )'cT(s)ds} =0, (17)
t—1(t)
t—t(t)
20T ()N |:x(t—f(t))—x(l‘—r2)—/ xT(s)ds] =0, (18)
where £(t) = [xT(t) xTt—1) xT@—1@) xT(t-— 7:2)]T.
Note that
2T ()M /H' x(s)ds < (z(t) — )T (@OMR*MT (1) + /H' xT(s)Rox(s)ds, (19)
t—1(1) t—z(t)

t—(t)

t—(t)
—2tT ()N /t_ X(s)ds s(zz—r(z))gT(z)NR;INTg(zH/t T (s)Ryx(s)ds. (20)

—15

According to (14) and Lemma 3, o (u(¢)) can be rewritten as

2m 2m
o(Kx() = 0;Kix(1),(>_6; =1,6; >0,i €T), 1)

i=1 i=1

where K; = (W; K + W, H).
By the definition of the matrix Z in (5), we can further rewrite the closed-loop system as

2m
x(t) = Z 6; [(A+ B1EKix(t) + Bi(E — E)Kix(t) + Agx(t — T(1)) + Bow(1)],  (22)
i=1

where E is the expeditions of E.
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Combining (16)—(22) and utilizing Lemma 1, we can obtain

2m
D 6 {2xT () P(A + B1EK)x (1) + 2xT (1) PAgx (t — T(1)) + 2xT (1) PByo ()

i=1

gV()Ct) $ E

2
+xT(1)(01+ Q)x (1) =Y xT(t — 1) Qix(t — )

i=1

. . xt) 1T =R, * x(t)
T OAE O+ |: x(t —11) } [ Rll —R; ] |: x(t—11) ]
+2tT () [Mx(t—11) + (N = M)x(t —t(t)) — Nx(t — 15)]

+ PO [() —t)MR'MT + (ra — () NRy'NT ] £ (1)} } : (23)

Recalling the definition of E and 2, we have

2m 2m
E{> 6 {xT()#k (1)} =E Z{nTa)\IJ?IT%‘W?In(r)
i=1 i=1
+ > 82T (OB FiK)T (B i FjK)x() p o (24)
j=1

where W2! = [(A+ B1EK) 0 Az 0 Bo],n(t)=[T()oT(1)]T.
Substituting (24) into (23), we can obtain

LV (x) +EZT(0)z(1) — o ()o(t)}
2m

T
ST {w!t o+ ol 4wz

i=1

<E

+[@@) —t)MR'MT + (1, — r(t))NRz_lNT]} n(z)}

2Mm  m
+ED N 83T () (B1FjKi)T % (ByFjKi)x (1)

i=1j=1

From Lemma 2 and Schur complement, we can know that (15) is the sufficient condition to
guarantee

2LV () + E{zT ()z(0) = y*oT ()w(1)} <0. (25)

When w(t) = 0, it means £V (x;) < 0; therefore, system (6) is mean asymptotically stable in the
case of w(t) = 0. When w(r) # 0 is integrating both sides of (25), from O to ¢, yields

t t
E { V()= V() + / 2T (s)z(s)ds — y? / a)T(t)a)(t)} <0. (26)
0 0
Letting t — 0o and under zero initial condition, we can show from (26) that
o0 o0
E {/ ZT(S)Z(S)dS§ <E {/ ysz(s)a)(s)ds} . 27)
0 0

This completes the proof. O
Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
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Theorem 1 presents a sufficient condition which guarantees the mean-square asymptotically sta-
bility of the closed-loop system (6). Now, we will give an LMI-based optimization algorithm to
obtain the largest contractively invariant ellipsoid & (P, 1) for (6). By optimization method in [3],
we can find an exact invariant set with least degree of conservativeness, which can be formulated as

max o (28)

aQ C (P, 1)
S 4y ——(19),

where Q = &(I1, 1), IT € R™*",

Theorem 2
For given scalars 71, 72, y,8;(j € Z), and matrix E. The closed-loop system (6), under all possible
stochastic actuator failure and saturation is mean-square asymptotically stable, if there exist matri-
ces X >0, Ql > 0, Q_z >0, Ry > 0, Ry > 0 and scalars ¢; (i =0,1,---,m) such that the following
LMIs hold

L_lj k 0 . I 29
> eT),
1T a;x (e @
[ O+ 3+ BT * ok x ]
w21 260X + €27 * kK
VL 0 U3« x| <0(G=12-.2"7r=12), (30)
T4 (r) 0 0 —Ry =
i @51 0 0 0 - |
where
T * * % *
R, —01—Ry * x *
vl = xAT 0 0 *  x ,
0 0 0 0 *
BT 0 0 0 —y2I

[i= AX + XAT + ByEW,Y + YTWTETBT + BiEW, L
+LTW TETBT + 01+ 02— Ry,

d=[0 M N-M -N 0],
W2 =[ AX+BiEW;Y + W, L) 0 AzX 0 BX |,

§1ByF\(WiY +W, L) 0 0 0 0
\ijglz . N
l

s

5mB1Fn(WiY +W,"L) 0 0 0 0

U3 = —diag{—26:X + {1 % —2emX + €5, %}, % =17R1 + (12 — 1) Ra,

m
W3 =[CX0000, ¥H'(1) = Yo —aMT, ¥} 2) = ymo—aNT.
Moreover, the controller gain is given by K = YX 1.
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Proof
From [3], the constraint (14) is equivalent to
1/_[,' * .
>
|:hiT ﬁiP]/OIGI’ (31

where h; is a i-th row of H.
Defining X = P~! and /; = h; X, by Schur complement, it can be further expressed as (29).
Besides, by Schur complement, Equation (15) is equivalent to

B \ill-“ + &+ o7 * * * * |
g2l —P#'Pp  x * *
VN 0 U3 « | <of i= L2027 (32)
i jeL;l=1,2 ’
WA (r) 0 0 —R, x
L yol 0 0 0 —I ]

where 3% = diag{—P# 'P---— P% 'P},¥5' = [C 00 0 0], and ¥ is the result of

m
removing CTC in T in W}
Owing to Equation (33) holds [18],

—PZ'P <—2¢P + €*%. (33)
We have (32) hold if
B ‘i—’,-“ + O+ o7 * * * % ]
w2 —2e0P + €% * * *
VER 0 [VEE R « | <of i= 122" (34)
i jezL;l=1,2 ’
\I/lf“(r) 0 0 —R, *
L VER 0 0 0 —I |

where W33 = diag{—2e, P + 3% -+ —2em P + €2 %}.

m
Premultiply and post-multiply (34) by diag {X, X, X, X,I,X,X,---,X, X, I} and define R; =
~—————
m
XRiX,0; = X0, X (i =1,2),M; = XM;X,N; = XN; X(i = 1,2,3,4)andlet L = HX, it
follows that (30) holds. This completes the proof. O

Remark 4

To avoid the complications, we use the inequality (33) to convert nonlinear matrix inequalities (15)
into LMIs; however, this step can be improved by adopting the cone complementary algorithm [19],
which is popular in recent control designs.

This completes the proof.
To find an exact invariant set with least degree of conservativeness, which can be formulated as

max o
aQ C &P, 1
5., cé(p, 1) (35)
(29) ——(30),
Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
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where Q = &(I1, 1), IT € R"*". By Schur complement, it is equivalent to

inf p

[ﬁl’[ *:|>O
s.t. I X |~ (36)

(29) ——(30),
where 8 = 1/a?.

Remark 5

In order to find the largest estimate for the domain of attraction, Zhang er al.[20] let ||x(z)| =
|X(2) ||, however, this condition is difficult to satisfy. The algorithm used in this paper can be easily
converted to the forms of LMIs, and the estimated result is close to the true one; moreover, the
obtained controller gain is much smaller, which will be illustrated in Section 4.

4. NUMERICAL EXAMPLE

Now, let us consider the two following illustrative examples to show the importance of our results.
The first is to show the effectiveness of enlarging the domain of attraction, and the second one is
provided to check the validness of the results dealing with the systems with both stochastic actuator
failures and interval time-varying delay.

Example 1
Consider a linear state-delayed system (1) with the following matrices:

05 -1 06 04 17 -
Az[o.s —0.5}’Ad=[0 —0.5}’312[1]’“1:5'

Assume that there are no any actuator failure occurring; that is, g2 = Lyxm,6; =0 (i € 1), and
the time-varying delay satisfies 0 = t; < 7(¢) < 1o = 0.35. By using optimization algorithm (36),
we obtain the following results:

p— |: 0.0963  —0.0165 i|’ K

—0.0165  0.0200 =[ —1.9714 0.6422 |, H =[ —1.4617 0.4696 |.

Figure 1 illustrates the largest invariant ellipsoid of the example by optimization problems (36).
The inner dotted-dash ellipsoid is obtained by the method of [21], and the outer solid and dashed
ellipsoid are the sets &'(P, 1) and e X g, respectively. It is clearly observed that the state of the exam-
ined system converges to the origin within the estimated domain of attraction despite the actuator
saturation and interval time-varying delays; furthermore, it can be shown that our approach gives a
lager estimation of the domain of attraction and a smaller state feedback gain. From Figure 1, we
can also find that the ellipsoid set is contained inside the set of admissible saturations L(H ).

If the time delay is a constant delay, that is, 71 = 7, = t, we can obtain the results listed in
Table I by introducing the index §;,;,4x as [20]. From Table I, we can find that our results are with
less conservativeness because of using Lemma 2.

Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
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Figure 1. Estimates of the domain of attraction and state trajectories without actuator failure.

Table I. Computation results of Example 1.

Methods t=0.35 t=1.0
Corllary 1 in [20] 6.0044 2.4571
Our results 6.1057 2.4623

Example 2
Consider the following linear time-varying delay systems (1) with

Y D A P I P P!

and the time-varying delay t(¢) satisfies 0.1 < 7(¢) < 1.2, the saturation parameter is #; = 2.5, and

. . (t—6)2 L R
the disturbance input w(¢) = e 0125 , which is shown in Figure 2.
Stochastic failure of the actuator is considered in this example, and the fault model (4) with the

parameters as & = 0.72,§; = 0.2. By using optimization algorithm (36) with y,,;, = 3.5, the

0.2

0.18
0.16
0.14 |
0.12}
0.11

oft)

0.08 |
0.06
0.04
0.02 |

0 5 10 15 20
time(s)

Figure 2. Disturbance input w(z).
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1.5

15 . . . . . . .
-2 -15 - -0.5 0 0.5 1 1.5 2

Figure 3. Estimates of the domain of attraction under actuator failure.

0.4
031
0.2
0.1

-0.1¢

x(t)

—02}
-0.3
-0.4
—05}

-0.6 ‘ ‘ ‘
0 5 10 15 20
time(s)

Figure 4. State trajectories using fault-tolerant controller.

following results can be obtained

p:[ 1.9464 —2.2986],

~22986  5.8430
[ -1.0159 —4.9367 ],

K=
H=[ —07164 —3.4726 ].

Figure 3 depicts the resulting invariant ellipsoids for the system with normal (the outer) and
stochastic actuator failure (the inner) conditions, respectively. It is shown that the ellipsoid becomes
smaller by reasons of actuator failure effecting on the system. The trajectories of the closed-
loop system using fault-tolerant controller is shown in Figure 4 with the initial conditions as
x(t) = [-0.3857 0.2285]T (t € [-1.20)).
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5. CONCLUSION

In this paper, the reliable control for a class of interval time-varying delay systems subject to stochas-
tic actuator failure and saturation is investigated. A new stochastic fault model is proposed by intro-
ducing arandom E as a fault scale factor matrix. Delay distribution and fault distribution-dependent
optimization approaches are proposed to enlarge the estimation of the domain of attraction by a set
of LMIs. Numerical examples are used to show the effectiveness of our proposed method.

ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China (Grant No. 61074025,
61074024, 60904013) and the Natural Science Foundation of the Jiangsu Higher Education Institutions
of China (Grant No. 10KJB510007).

REFERENCES

1. Benzaouia A, Burgat C. Regulator problem for linear discrete-time systems with non-symmetrical constrained
control. International Journal of Control 1988; 48(6):2441-2451.
2. Tarbouriech S, Prieur C, da Silva Jr IMG. Stability analysis and stabilization of systems presenting nested saturations.
IEEE Transactions on Automatic Control 2006; 51(8):1364—-1371.
3. Hu T, Lin Z, Chen B. An analysis and design method for linear systems subject to actuator saturation and
disturbance* 1. Automatica 2002; 38(2):351-359.
4. Peng C, Tian Y, Tadé M. State feedback controller design of networked control systems with interval time-varying
delay and nonlinearity. International Journal of Robust and Nonlinear Control 2008; 18(12):1285-1301.
5. Yue D, Han Q. Delayed feedback control of uncertain systems with time-varying input delay. Automatica 2005;
41(2):233-240.
6. Tian E, Peng C. Delay-dependent stability analysis and synthesis of uncertain TS fuzzy systems with time-varying
delay. Fuzzy Sets and Systems 2006; 157(4):544-559.
7. Vidyasagar M, Viswanadham N. Reliable stabilization using a multi-controller configuration. Automatica 1985;
21(5):599-602.
8. Zhang K, Jiang B, Shi P. A new approach to observer-based fault-tolerant controller design for Takagi—Sugeno fuzzy
systems with state delay. Circuits, Systems, and Signal Processing 2009; 28(5):679—697.
9. Zhang K, Jiang B, Cocquempot V. Adaptive observer-based fast fault estimation. International Journal of Control
Automation and Systems 2008; 6(3):320-326.
10. Wu H, Zhang H. Reliable mixed fuzzy static output feedback control for nonlinear systems with sensor faults.
Automatica 2005; 41(11):1925-1932.
11. Aiqing Z, Huajing F. Robust reliable guaranteed cost control for nonlinear singular stochastic systems with time
delay*. Journal of Systems Engineering and Electronics 2008; 19(4):791-798.
12. Yu L. An LMI approach to reliable guaranteed cost control of discrete-time systems with actuator failure. Applied
Mathematics and Computation 2005; 162(3):1325-1331.
13. Lien C, Yu K. Robust reliable control for uncertain time-delay systems with IQC performance. Journal of
Optimization Theory and Applications 2008; 138(2):235-251.
14. Zuo Z, Ho D, Wang Y. Brief paper: fault tolerant control for singular systems with actuator saturation and nonlinear
perturbation. Automatica (Journal of IFAC) 2010; 46(3):569-576.
15. Shi T, Su H, Chu J. On stability and stabilisation for uncertain stochastic systems with time-delay and actuator
saturation. International Journal of Systems Science 2010; 41(5):501-509.
16. Gu K, Kharitonov V, Chen J. Stability of Time-Delay Systems. Birkhauser: Boston, MA, 2003.
17. He Y, Wang Q, Lin C, Wu M. Augmented Lyapunov functional and delay-dependent stability criteria for neutral
systems. International Journal of Robust and Nonlinear Control 2005; 15(18):923-933.
18. GuZ, Yue D, Wang D, LiuJ. Stochastic faulty actuator-based reliable control for a class of interval time-varying delay
systems with Markovian jumping parameters. Optimal Control Applications and Methods 2011; 32(3):313-327.
19. El Ghaoui L, Oustry F, AitRami M. A cone complementarity linearization algorithm for static output-feedback and
related problems. /IEEE Transactions on Automatic Control 1997; 42(8):1171-1176.
20. Zhang L, Boukas E, Haidar A. Delay-range-dependent control synthesis for time-delay systems with actuator
saturation. Automatica 2008; 44(10):2691-2695.
21. Zuo Z, Wang Y, Zhang G. Stability analysis and controller design for linear time delay systems with actuator
saturation. American Control Conference, 2007. ACC’07, New York, NY, 9—13 July 2007; 5840-5844.

Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. (2011)
DOI: 10.1002/oca



